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• An optical communication system

• The Serial Concatenated Pulse-Position Modulation  (SCPPM) Code

• The Soft-In Soft-Out (SISO) decoding algorithm

• Contributions in FPGA implementation of the SISO decoder

1. Computing the Super Gammas to handle parallel trellis edges

2. An efficient implementation of the maxstar Look-Up-Table

3. Non-blocking interleaver and deinterleaver design.

4. Fast clipping circuit for quantization.

• Hardware speed and throughput

Outline
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• Our focus is only on the encoder and decoder.

An optical communication system
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SCPPM Encoder

• Serial concatenated pulse-position modulation (SCPPM) encoder

• An outer (5,7) rate 1/2 convolutional code

• An inner accumulate and PPM mapping.

• Possible PPM orders 
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The Inner Code

• Accumulator with anti-Gray bit-to-symbol mapping.

• The inner code is described by a 2-state trellis with M/2 edges between 
connecting states.
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The Outer Code

• The (5,7) convolutional code with rate 1/2.

• The code is described by a 4-state trellis with input/output: 
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• The BCJR algorithm is used to traverse the trellis and calculate:

•  The joint probability that the state is i(e) at time k-1 and the sequence         is observed --

• The conditional probability that the sequence     is observed starting at time k given current state 
is t(e) -- 

• The conditional probability that the transition y is observed given the state pairs i(e) and t(e) --

•  The probability of edge e at time k given observation at all times --
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Decoder Architecture

• Apply the BCJR algorithm to the inner and outer trellis.

• The bit Log Likelihood Ratios (LLRs) are calculated from the metric

• Iterate between the inner and outer decoder to refine the overall bit-
decision.

• Use the log-domain approach to avoid multiplication and division.
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The Maxstar Operation

• Can pre-compute the log term in maxstar and store in a Look-Up-Table (LUT)
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Super Gammas

• We can group the parallel gammas into a super gamma and use a 
pipelined maxstar to compute the super gammas in one clock cycle for 
the forward and backward recursions.
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Block Diagram of Inner Decoder

• Use of partial statistics to reduce data transfer from receiver.

• The outer decoder consists of similar data flow.
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De-interleaver Design

• Inner code generates 
6 LLRs per clock 
cycle.

• The LLRs are written 
sequentially into the 
de-interleaver.

• The outer code 
fetches 2 LLRs per 
clock. This read is 
done by finding the 2 
distinct rows that 
contain the LLRs and 
selecting the right 
one out of the 6.No read conflicts will occur using our mapping.
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Interleaver Design

• Partition Interleaver into 6 
distinct memories

• Write permuted the 2 LLRs 
generated by the outer 
code in one clock into the 
BRAMs

• Our mapping prevents 
write conflicts

• Even if there were, the 
dual-ported BRAM can 
handle simultaneous writes
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FPGA Implementation - Quantization Effects

• FPGA implementation requires 
all floating-point values to be 
quantized stored as fix-point 
numbers: 

• w determines dynamic range 
and p determines decimal 
precision

• Simulations indicate w=5 and 
p=3 would lead to a signal 
energy loss less than 0.2 dB 
from floating point 
performance.
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FPGA - Memories and Circuits

• We designed a fast clipping circuit 
to quantize only the log alphas and 
betas.  The other metrics are 
allowed to grow.

• The maxstar LUT for p=3 has only 
21 3-bit entries and this allowed 
for implementation as ROMs using 
Xilinx’s distributed RAMs.

• Other storage elements such as 
ones for the betas and  channel 
LLRs are implemented using Xilinx 
Block RAMs (BRAMs).
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Hardware Specifications

• The SCPPM decoder for M=64 is implemented on a Xilinx Virtex II 8000 
grade 4 which sits on a Nallatech BenDATA WS board.

• Xilinx place and route reported design has 6.5 million gates.

Full 
Decoder

used/total utilization
Inner 

Decoder
Outer 

Decoder
Interleavers 

& others

BRAM 101/168 60 %
19 % of 

total
9 % of 
total

32 % of total

Flip Flops
17311/
93184

18 % 16 % 1 % 1 %

Slices
30174/
46592

64% 52 % 6 % 6 %
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Speed and Throughput

• Assuming 7 average iterations, we can obtain the clock speed and 
calculate the throughput for various FPGA parts.

Part Number Maximum Clock Data Rate

Virtex II 8000 - 
grade 4

17 MHz 0.907 Mbps

Virtex II 8000 - 
grade 5

23 MHz 1.23 Mbps

Virtex II - Pro 28 MHz 1.5 Mbps
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Summary

• Presented an FPGA implementation of an SCPPM decoder for Deep 
Space Laser communication.

• Contributions in Super Gammas pipelining,  reducing quantization effects, 
non-blocking interleaver/de-interleaver designs, and a fast clipping circuit 
are made.

• Potential decoder improvements can be made:

1. Applying window-based BCJR to inner and outer decoder for a 
possible 2 and 4 times the speed up respectively.

2. Building on a larger FPGA part such as the Virtex IV which is already 
available on the market and could double the speed.

• Using a baseline of 1.5 Mbps, the final design could in principle deliver 24 
Mbps and this translates into a 50 Mbps SCPPM decoder that can fit onto 
3 FPGAs.


